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A new “background plasma” method for treating boundaries in Eulerian magnetohydro- 
dynamic computations is presented. Previously unconsidered aspects of plasma confinement 
by a wall are examined in the formulation of the boundary condition. Innovations include 
a distinct condition under which a plasma can separate from a wall resulting in an influx of 
“background plasma,” the use of boundary values which are interpreted to be interface 
values not included in volume integrations, and a condition under which a plasma returns 
to the wall resulting in a stoppage of the outflux of “background plasma.” Excellent agree- 
ment is obtained between a Lagrangian computation and an Eulerian computation in- 
corporating the new boundary condition. 

INTRODUCTION 

Numerical magnetohydrodynamic (MHD), or fluid, computations of plasma 
behavior are becoming increasingly popular as the available physical models become 
more sophisticated and the available computers become more powerful. The prime 
objects of the computations are the various plasma pinch machines at laboratories 
throughout the world. Initial conditions for the pinch computations are usually a 
uniform plasma in contact with a confining wall. The physical models for which 
numerical solutions are attempted will, in general, require the plasma to separate 
from the wall as an external magnetic field is applied, and consequently a vacuum 
region is formed between the plasma and the wall. Representation of the vacuum 
region is a problem which has plagued computational magnetohydrodynamicists 
since the pioneering calculations of Hain et al. [l]. 

The traditional treatment of the vacuum region, as introduced by Hain et al., 
has been to create low-density plasma at the wall so that a vacuum never occurs. 
Most MHD codes with which the author is familiar have used this idea in one form 
or another. When current flow is perpendicular to the magnetic field, the creation 
of the low-density plasma is, in principle, legitimate, since, if treated properly, the 
low-density plasma will move in a manner such that the magnetic field in the low- 
density plasma is essentially the vacuum field; also, the inertial properties of the low- 
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density plasma can be made unimportant if the density is sufficiently low. One aspect, 
however, which has not been considered in the literature is the possibility and effect 
of force-free currents in the low-density plasma created for numerical convenience. 

An obvious problem of the “background plasma” approach is the high magneto- 
acoustic speeds which occur in the background. With explicit numerical methods, 
particularly, the high magnetoacoustic speeds can severely restrict the time step, 
as Roberts and Potter [2] have explained in their review of MHD calculations. The 
problem of high magnetoacoustic speed has been alleviated to some extent in a variety 
of ways. Implicit numerical methods can, in principle, eliminate it altogether. A second 
alternative was proposed by Boris [3], who incorporated the displacement current 
into the MHD equations and then introduced a fictitious speed of light. Some codes 
use a floor value below which the density is prevented from falling, either by arti- 
ficially preventing mass flow out of cells or artificially injecting mass into cells which 
otherwise would drop below the floor value. In the former case, mass which should 
be in the main plasma is left behind, and in the latter case, the total mass in the problem 
increases, as it does when plasma is created at the wall. The effect on the main plasma 
of either case is, of course, dependent on the floor value. 

For unbiased pinches driven by strong magnetic fields, the “background plasma” 
approach has in general proved satisfactory. However, the author has seen calculations 
from several codes where a numerical wall “hang-up” has occurred with persistent 
currents flowing in the the low-density, “background plasma” at the wall, resulting 
in a shielding of the main plasma to some extent from the applied magnetic field. 
Although there are, of course, experimentally observed cases of wall “hang-up,” 
it is quite suspect to suggest that a “hang-up” due to numerical methods bears any 
semblance of reality. The success of the method has apparently been limited, also, 
when applied to reverse-bias pinches in which the initial motion of the plasma is 
toward, rather than away from, the confining wall. Niblett and Fisher [4] reported 
that the code of Hain et al. encountered difficulties when the reverse bias for theta 
pinch calculations was above a certain level. 

This paper describes the boundary condition used in the computer code ANIMAL- 
A New Implicit iklagnetohydrodynamic ALgorithm [5,6]. The boundary condition is a 
generalization of the “background plasma” method and leads to solutions which 
do not exhibit any wall “hang-up.” The boundary condition also enables the code to 
calculate pinches with reverse bias of any magnitude. In addition, the boundary 
condition enables the code to calculate accurately pinches in which the magnetic 
field oscillates in a manner such that the plasma alternately separates from the wall 
and then returns to the wall, clearly a more complex situation than either the standard 
unbiased pinches or the reverse-bias pinches. 

PHYSICAL MODEL 

Although the ANIMAL code calculates two-dimensional solutions to MHD model 
equations which include thermal conduction, resistive diffusion, and atomic physics 
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and which are applied to cylindrical and toroidal geometries, it is sufficient to consider 
a one-dimensional, ideal MHD model to illustrate the boundary condition. The model 
uses a continuity equation, an equation of motion, an internal energy equation, and 
Faraday’s law. The appropriate Eulerian partial differential equations are 

g + ; (pv) = 0, 

a(pu) at + g (pvv) + g + ax = 
ww) o 

’ 

y + g (pa) + p g = 0, 

In Eqs. (l)-(4) p is the mass density, u the fluid velocity, E the specific internal energy, 
B the magnetic field, and p the material pressure. For completeness, the model 
requires an equation of state relating p to p and E. 

For the model Eqs. (l)-(4), the analog of typical pinch calculation conditions is a 
“slab” of plasma confined between two walls, as illustrated in Fig. 1. Initially the 
plasma is uniform and in contact with the walls. When the externally generated 
magnetic field is applied to the plasma, the plasma will separate from the wall if the 
applied magnetic pressure, B2/2, is larger than the initial plasma pressure pO, as 
illustrated in Fig. 2b. Since Eq. (4) is an infinite electrical conductivity approximation, 
no magnetic flux enters the plasma. However, magnetic flux does enter the void which 
opens between the plasma and the wall. 

-ex 
FIG. 1. Simplified plasma pinch geometry 

On the other hand, if the applied magnetic pressure, B2/2, is less than pO, the net 
force everywhere on the plasma is identically zero. Therefore, absolutely nothing 
happens to the plasma, as illustrated in Fig. 2a. For B2/2 less than or equal to p,, , 
the model equations indicate that the plasma cannot differentiate between wall 
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confinement, total magnetic confinement, and situations when part of the plasma 
pressure is supported by the wall and part by the magnetic field. Only the wall can 
detect the application of the magnetic field because the pressure on it decreases. 

a X 
-XMAX 0 XMAX 

L 
MOTION 

- c- 

b 

w MOTION 

C 

------- MAGNETIC PRESSURE 

PLASMA PRESSURE 

FIG. 2. Distinct cases in a plasma pinch. a. The magnetic pressure is less than the plasma pressure, 
so the plasma remains stationary. b. The magnetic pressure exceeds the plasma pressure, so the 
plasma moves away from the confining walls. c. The magnetic pressure drops below the plasma 
pressure, so the plasma moves toward the walls. 

In the plasma there is thus a switch-on effect. For B2/2 less thanp, , nothing happens. 
When B2/2 exceeds p,, , however, the plasma feels the presence of the magnetic field 
and moves accordingly. 

The switch-on effect is also present in the more complete MHD models which have 
been incorporated into computer codes such as ANIMAL. The inclusion of resistive 
diffusion adds a term ~(aB/ax)~ to the right-hand side of Eq. (3) and a term (a/&) 
(q(aB/h)) to the right-hand side of Eq. (4); 7 is the electrical resistivity. When re- 
sistive diffusion is present, magnetic field can penetrate into the initially uniform 
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plasma, causing a net force on interior plasma where the pressure gradient is zero. 
As the interior plasma moves inward, the plasma pressure at the wall can decrease 
until it is exceeded by the magnetic pressure gradient at the wall, at which time 
separation occurs. However, separation can be maintained only if the applied magnetic 
pressure gradient exceeds the peak plasma pressure. 

There is also a switch-off effect indicated by the model Eqs. (l)-(4). When the plasma 
moves toward the wall, as illustrated in Fig. 2c, the full applied magnetic field is felt 
by the plasma and the plasma is subsequently decelerated by the field. When the plasma 
hits the wall, however, the subsequent motion of the plasma is the same as if no 
magnetic field were present, until the reflection from the wall causes the pressure 
at the wall to decrease below the value of the applied magnetic pressure, at which 
time a separation occurs. 

FINITE DIFFERENCE METHODS 

Fundamental to the boundary condition described in this paper is the manner in 
which the spatial region of interest is divided into finite intervals, or “zones,” which 
determine the points in space at which the dependent variables of Eqs. (l)-(4) are 
defined. In ANIMAL, the region of interest is divided into JMAX - 2 cells, or zones, 
and all dependent variables, including velocity, are defined at JMAX points, as 
illustrated in Fig. 3. The “cell-centered” values such that 2 <j < JMAX - 1 are 
interpreted physically as being “average” values, so that, for example, the total mass 
in the problem is equal to the sum of the products of the density and cell volumes. 
The values of the dependent variables at j = 1 and j = JMAX are interpreted as 
boundary values; they are considered to be located one-half cell away from the values 
at j = 2 and j = JMAX - 1, respectively, and they are not included in the deter- 
mination of integral quantities such as mass, thermal energy, etc. 

FIG. 3. Zoning used by the ANIMAL code. 

To illustrate the boundary condition, it is sufficient to consider approximations to 
Eq. (l)-(4) which are discretized only in the spatial dimension. The semidiscretized 
equations are 
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= 

where 

dx 2 + (p”G)+ - (j%)- = 0, 

Ax %4 at + v+(,i%)+ - v-(/S)- + F+ + F- = 

Ax %4 -$-- + (pz)+ - (j%::i)- + p+ SC, + p- 61 

aB Ax - + rs,B+ - CB- = 0, 
at 

(9 

0, (6) 

I.= 0, (7) 

(8) 

F+ = 6p, + EJB, , 

Fe = Sp- + HB- , 
(9) 

(10) 

and where, for convenience, the subscripts + and - are used to replace subscripts 
j + 4 and j - 4, respectively, and the subscript j has been dropped from all un- 
subscripted quantities. As usual pj = p&), etc., the 6 is a difference operator 

SQi+m = <Qi+, - QiY2; 2lj<JMAX-2 (11) 

and the bar indicates an averaging operator 

CL/2 = CQi+, + QJZ 2<j<JMAX-2. (12) 

Equations (5)-(S) apply for all j such that 2 <j < JMAX - 1. The tilde (-) in- 
dicates terms which have some arbitrariness. As discussed by Lindemuth [7], Eqs. 
(5)-(g) conserve total energy and maintain several “subconservation” properties 
of Eqs. (l)-(4). 

THE BOUNDARY CONDITION 

In all previous attempts at solving MHD equations numerically, the switch-on 
and switch-off effects described in a previous paragraph have apparently not been 
examined closely. For strong field pinches, the main computational difficulty is getting 
the “vacuum” magnetic flux into the computational domain. For low-field pinches, 
reverse-bias pinches, and oscillating field pinches, however, the switch-on and switch- 
off effects must be incorporated in order to properly treat the presence of a wall. 

In the following, only the boundary condition at j = 1 will be discussed; the 
boundary condition at j = JMAX is analogous. The convective fluxes in Eqs. (Q-(8) 
are written simply as 

@%2 = A/24 3 (13) 

~3/2@%/2 = fJ12h2 > (14) 

W~hl2 = G%2Q 2 (15) 

&A&,, = 4~1, (16) 

and the compression term of (7) as 

&215%2 = P2@2 - VI>* (17) 
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In Eqs. (13)-( 16) it is to be noted that if the boundary velocity til is zero, the values 
of is12 7 (p”-1 E S,2, and B, are irrelevant. When v1 is zero, mass, momentum, thermal 
energy and magnetic flux are not convected across the j = 1 boundary. 

The velocity v1 is initially zero. An examination of the force F3,2 is required to 
determine when the value of v1 becomes nonzero. F3,4 is determined by 

Fw2 = 0, if +(B, + B.&B, - B,) + ps >, 0 and c1 = 0, 

= P, + Bz>(B2 - 4) + ~2 otherwise. 
(18) 

If, and only if, F312 becomes nonzero, V, becomes nonzero and is set to 

VI = glz - +I3 (19) 

for uniform zone size; Eq. (19) is a linear extrapolation. 
It should be noted at this time that Eq. (17) guarantees energy conservation when 

vi = 0. As shown by Lindemuth [7], the energy flux across the j = 5/2 interface due 
to finite pressure is &&,,2 = (pZ + p3)(v2 + v3)/4; this is most easily shown by 
using the identity 

sp, + sp- = p+ - p- (20) 

in Eq. (6). With Fe in (6) set to zero, we find that 

Llx(a/at)(~pv”) + *.* = --udP,/, = --v,(P, -P,)/2 
= -(v2 + %l)(Ps + PA/4 + (Ps + P&3 - d/4 + PZVZ 
= -E5/2k/2 + ik28v5,2 + PZv2 * 

(21) 

When total energy is summed over the entire domain, the first term on the right-hand 
side of the last equality in (21) is canceled by an opposite flux, the second term is 
canceled by the fourth term of Eq. (7), and the last term is canceled by the term in 
Eq. (17); hence total energy is conserved. 

The conditional test indicated by Eq. (18) is a unique feature of the boundary 
condition reported in this paper. It is sufficient to enable ANIMAL to properly 
handle the cases depicted in Figs. 2a, 2b. When the applied magnetic pressure is less 
than the plasma pressure, as in Fig. 2a, p2 - B12/2 is greater than zero, and therefore 
F3,2 is zero. (Bz is zero since the electrical conductivity is infinite.) When F,,, is zero, 
absolutely nothing happens. Tf, however, p2 - B12/2 is less than zero, F,,, becomes 
nonzero, causing an increase in v2 and hence v i , by Eq. (19), is nonzero. There is then 
a flow of mass, momentum, thermal energy, and magnetic flux into the region of 
solution as indicated by Eqs. (13)-(16). When Q is positive, 

P”312 = PBG 3 (22) 

(P”%IB = PBG~BG 2 (23) 

where the subscript BG indicates “background plasma.” The “background plasma” 
density pBG and internal energy EBG are purely arbitrary. By virtue of Eqs. (16) and 
(19) the vacuum magnetic field is convected into the region of solution by the “back- 
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ground plasma.” Equation (19) ensures that the rate of convection is essentially the 
E x B drift. 

For the case of Fig. 2c, u1 is negative, and p”312 and (i%Z),,, cannot be specified ar- 
bitrarily. In this case, 

/53/z = P2 > (24) 

m/2 = P2E2 7 (25) 

and the vacuum field and background plasma are convected out of the region of 
solution. Eventually, however, “real” plasma flows into zone 2 from zone 3, and at 
this time flow out of thei = 1 interface must be stopped. Thus, when a1 is less than 
zero, and p2 becomes greater than a “cutoff” density p C0, u1 is reset to zero. From then 
on, F3t2 is zero until the test for turning the “background” on is again satisfied. 

To be physically precise, the force F8,2 should be formulated in terms of the wall 
pressure as well as the plasma and magnetic pressures. For the case of Fig. la, the 
wall pressure is merely the difference between the applied magnetic pressure and the 
plasma pressure. Hence, the pressure jump across the plasma-wall interface exactly 
cancels the jump in magnetic pressure. On the other hand, for the cases of Figs. lb, 
lc, the wall pressure is ,zero. Equation (18) effectively takes into account the wall 
pressure under these circumstances. 

The test indicated in Eq. (18) is actually a test for separation from the wall and the 
resetting of a1 to zero when p2 exceeds pco is actually a test for return of the “real” 
plasma to the wall. Hence, in the ANIMAL code, there are clearly defined conditions 
of interaction with the wall; when v1 is zero, the plasma is in contact, and when u1 
is nonzero a “vacuum” region separates the plasma from the wall. 

The treatment of the boundary as outlined above is also applicable to the case of 
finite resistivity. The test indicated in Eq. (18) is again performed, but with finite 
resistivity, B, is no longer zero. When the applied magnetic field is oscillatory, such 
as in the computation of the preionization phase of a pinch discharge, the plasma can 
alternately separate and return to the wall during each half cycle of the discharge. 
The boundary treatment generalizes in a straightforward manner to curvilinear 
coordinate systems. It is also applicable to two-dimensional computations. In the 
ANIMAL code, the boundary condition has been used for several different classes 
of two-dimensional axisymmetric calculations in which only an azimuthal magnetic 
field was present. In the two-dimensional case there can simultaneously be some 
boundary cells where the “background plasma” is “on” and others where it is “off.” 
It appears that the boundary treatment can be readily generalized to multicomponent 
magnetic fields if the boundary is a flux surface, but it is unclear whether or not any 
fictitious force-free currents will occur in the “background plasma.” 

It is to be remembered that the zoning as illustrated in Fig. 3 plays an important 
part in the boundary condition and its interpretation. It is unclear just how one would 
implement the switch-on and switch-off effects for any other zoning choice or in cases 
where the dependent variables are not all defined at the same mesh point. Other 
boundary conditions, such as axis of symmetry or plane of symmetry, can be im- 
plemented in a straightforward manner for the zoning of Fig. 3. 
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Prior to the incorporation of the boundary treatment described here, several ficti- 
tious numerical effects were observed in calculations performed with predecessors 
to the current ANIMAL code and the author has also observed similar effects in 
calculations performed with other codes. In the treatment of a case analogous to that 
depicted in Fig. 2a, an oscillatory motion was observed to occur. This motion was 
due to an improper treatment of the force F3,2 in which effectively the pressure gradient 
at the wall was taken to be zero rather than exactly equal and opposite to the magnetic 
pressure gradient; hence, the plasma would move away from the wall to establish the 
required pressure gradient, overshoot the equilibrium value, and oscillate. The same 
improper treatment also caused fictitious reflected waves from the wall after a plasma 
returned to the wall after separation. 

A variety of other ways was tried to introduce the magnetic flux into the compu- 
tational domain prior to the identification of boundary values as interface values 
which determine flow rates into the domain. One approach was to locate boundary 
values a full cell width from the first interior point and interpret the boundary values 
as averages over a half-cell. Hence, the magnetic field penetration is always at least 
one half-cell in length. Allowing the half-cell penetration obviously led to the ficti- 
tious oscillations discussed above. In addition, this approach, depending on imple- 
mentation, led to the “wall hang-up” indicated in the Introduction, since ohmic 
heating of the boundary half-cell increased its conductivity and convection from the 
boundary half-cell to the first interior cell did not reduce sufficiently the magnetic 
field gradient between the two cells. A similar “wall hang-up” would occur in the 
ANIMAL code if the convection indicated by Eqs. (16) and (19) were not permitted 
to occur, since the only way magnetic flux could enter the computational domain 
would be by resistive diffusion whose rate decreases as the plasma ohmically heats. 
The use of an artificially high resistivity was not satisfactory. 

All approaches prior to the one reported here led to very unsatisfactory results 
when applied to reverse-bias pinches and pinches in which the applied magnetic 
field was slowly rising. In these instances, a significant amount of time occurs before 
the condition for turning “on” the background occurs. The test of Eq. (18) assures 
that no convective processes occur at the boundary until the plasma should actually 
separate; hence, the time delays prior to separation are handled naturally. In the next 
section, the boundary condition reported here is applied to a one-dimensional situa- 
tion in which the magnetic field at one boundary is slowly rising and weak, leading 
to relatively little separation, and in which the magnetic field is oscillatory, so that a 
reverse-bias pinch occurs on the second half-cycle. 

A TEST PROBLEM 

To test the boundary condition described above, and, of course, to help test the 
entire ANIMAL code, we have run a one-dimensional test problem on the Eulerian 
code ANIMAL and the Lagrangian code HEMPMHD [II]. The physical situation is 
shown in Fig. 4. The coaxial tube is assumed infinite so that a one-dimensional cal- 
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culation is sufficient. Initial conditions for the calculation are a uniform deuterium 
plasma with density p0 = 3 x IO-* kg/m3 and temperature r,, = 3 eV. The applied 
current is sinusoidal with amplitude 450 kA and a period of 20 microseconds. The 
calculations are followed for 15 microseconds. A fully ionized equation of state is 
used to describe the plasma, and the physical model used includes thermal conduction 
and resistive diffusion. The confining insulators are treated as thermal as well as 
electrical insulators, so no heat is lost from the plasma to the insulators by thermal 
conduction. For the Eulerian calculation, the region of solution is divided into 45 
equally sized zones; for the Lagrangian calculation 38 zones are used. Artificial vis- 
cosities similar to ihe artificial viscosity of von Neumann and Richtmyer [9] are used 
in both calculations. 

FIG. 4. Geometry for a onedimensional test problem. 

HEMPMHD is a code which incorporates strength-of-materials into its physical 
model. It therefore can calculate situations in which material spa11 occurs. Under 
spa11 conditions, of course, a continuous piece of material can separate into two 
distinct pieces. Because HEMPMHD can handle spall, it quite naturally handles 
separation of a plasma from a confining wall. In a sense, the test of Eq. (18) is modeled 
after the test for spa11 used in HEMPMHD. 

Figure 5 plots the position of the Lagrangian interfaces versus time for the 
HEMPMHD calculation. The positions of the innermost and outermost interfaces 
are of particular interest. The innermost interface does not begin to move until the 
magnetic field has reached a sufficiently high value; because of resistive diffusion, the 
interfaces interior to the innermost interface begin to move before the innermost one. 
The applied current, and hence the applied field, passes its peak at 5 microseconds 
and the plasma begins to expand toward the center of the coax shortly thereafter. 
Eventually the innermost interface returns to the confining insulator and remains 
there as the applied current passes through zero and begins to increase with negative 
polarity. When the current reaches a sufficiently high value, the innermost interface 
again moves away from the insulator. 
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FIG. 5. Position of Lagrangian zone interfaces as a function of time. 

TABLE I 

Comparison of Separation and Return Times for the Teat Problem 

Inner wall 

HEMPMHD ANIMAL 

Separation 0.3-0.4 0.29 
Return 9.6-9.7 9.41 
Separation 10.4-10.5 10.57 

Outer wall 

HEMPMHD ANIMAL 

Separation 2.1-2.2 2.13 
Return 2.3-2.4 2.44 
Separation 4.2-4.3 4.32 
Return 4.9-5.0 4.73 
Separation 2 14.2 14.19 
Return 2 14.4 14.40 

Nofe: All times are in microseconds. 
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The outermost interface of the HEMPMHD calculation moves away from and 
then returns to the outer insulator three times, although the first and third times are 
just barely perceptible in Fig. 5. In each case, the interface moves only slightly before 
the inverse pinch from the inner insulator overwhelms the z-pinch from the outer 
region. The second and third separation of the outermost interface occur only because 
the pressure at the outer insulator can decrease below its equilibrium value when the 
outward moving compression waves reflect from the outer insulator. 

Table I compares the separation and return times for the HEMPMHD and 
ANIMAL calculations; for the HEMPMHD calculation, data were available only 
at 0.1 microsecond intervals. Figure 6 compares the increase in thermal energy of the 
plasma for the two calculations; the maximum difference is less than 10%. For the 
“background plasma” used in the ANIMAL calculation, PBG was 1O-5 kg/m3 and 
TBG was 3 eV. The “cutoff” density pco was 3 x 1O-5 kg/m3. In ANIMAL, thermal 
conduction, ohmic heating (but not resistive diffusion), and shock heating are turned 
“off” when the density drops below pco ; the effect of doing so is negligible. 

------- ANIMAL 

- HEMPMHD i 

0 5 10 

TIME (MICROSECONDS) 

5 

FIG. 6. Increase in total thermal energy for the one-dimensional computations. 

Considering the fundamental differences between the Lagrangian and Eulerian 
formulations, the agreement shown in Table I and Fig. 6 must be considered quite 
remarkable. Figure 6 shows that at times the spatial resolution of the HEMPMHD 
calculation is about three times greater than that in the ANIMAL calculation. 
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Figure 6 also shows that the outer plasma actually moved inward less than the size 
of an ANIMAL zone before returning to the wall. Because ANIMAL uses alternating- 
direction implicit finite difference methods [6], its time step size was not limited by the 
“Courant condition” of the “background plasma” and, in general, the ANIMAL 
time step was larger than the time step used in the HEMPMHD calculation. 

SUMMARY AND CONCLUDING REMARKS 

In the previous paragraphs, a new boundary condition for Eulerian computational 
magnetohydrodynamics has been presented. The boundary condition incorporates 
physical aspects which have heretofore been unconsidered. The agreement between 
the HEMPMHD calculation and the ANIMAL calculation must be interpreted as 
verifying the accuracy of the boundary conditions and numerical methods of both 
codes. 

The test problem described above has also been run on other codes, several 
Lagrangian and one Eulerian, which are available at this Laboratory. In general, 
the agreement was much less than that shown in Fig. 6. The other codes do not have 
clearly defined separation and return times, and much of the disagreement between 
the codes can be traced to a failure to properly treat the switch-on and switch-off 
effects described above. It is clear that to perform accurate MHD calculations, the 
effect of a confining wall on a plasma must be considered carefully. 
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